

UNIVERSIDADE FEDERAL DE SANTA CATARINA

CENTRO DE CIÊNCIAS BIOLÓGICAS

Departamento de Biologia Celular, Embriologia e Genética Campus Trindade - CEP 88040-900 - Florianópolis/SC Tel: 48 3721-4760

PLANO DE ENSINO 2018.2

I. IDENTIF	TCAÇÃO DA DISCIPLINA				
CÓDIGO	NOME DA DISCIPLINA	TURMAS	Nº DE HORAS-AULA SEMANAIS		TOTAL DE HORAS-
			TEÓRICAS	PRÁTICAS	AULA SEMESTRAIS
BEG7012	Biologia Celular	02108A/B/C	04	02	108

II. PROFESSORES MINISTRANTES

Profa. Dra. Luciane Maria Perazzolo (horário de atendimento: terça-feira das 15h00 às 17h30. Local: CCB/BEG sala 114B) Prof. Dr. Rafael Diego da Rosa (horário de atendimento: quarta-feira das 14h00 às 18h00. Local: CCB/BEG sala 113B)

III. PRÉ-REC	QUISITO PARALELO	
CÓDIGO	NOME DA DISCIPLINA	
BQA70002	Bioquímica Básica	

IV. CURSO PARA O QUAL A DISCIPLINA É OFERECIDA

Ciências Biológicas

V. EMENTA

Diversidade celular. Organização da célula procariota e eucariota. Evolução celular. Aspectos morfológicos, bioquímicos e funcionais da célula, de seus revestimentos e de seus compartimentos e componentes subcelulares. Integração morfofuncional dos componentes celulares. Métodos de estudo em biologia celular.

VI. OBJETIVOS

Fornecer as bases da organização celular, partindo das células mais simples (procariontes) até as mais complexas (eucariontes). Fornecer conhecimentos a respeito da morfologia, fisiologia, organização molecular e biogênese das diversas organelas e das estruturas de superfície dos diferentes tipos celulares. Integrar os fenômenos celulares aos níveis de organização superiores, como tecidos e órgãos, e aos inferiores (nível molecular). Integrar esse conhecimento na formação de uma visão global dos processos biológicos que encontram resposta na célula.

VII. CONTEÚDO PROGRAMÁTICO

Teórico 1. Níveis de organização em Biologia; Limites e dimensões em biologia celular; Principais marcos históricos na biologia celular; Grandes grupos de seres vivos; Diversidade celular. 2. Organização da célula procarionte: das bactérias mais simples (micoplasmas) às mais complexas (cianobactérias), passando pelas bactérias comuns. Alguns aspectos sobre o grupo Archaea. Noções de compartimentalização celular. 3. Bases da evolução da célula procarionte para eucarionte. Organização celular dos eucariontes: comparação da célula animal, vegetal, fungo e Protista. Noções de unicelularidade, pluricelularidade. Vantagens da compartimentalização celular interna. 4. Composição química, organização molecular e ultraestrutura das membranas celulares. Principais técnicas de estudo: ultraestrutura ao MET e criofratura. Cobertura celular (glicocálice e parede celular) e estruturas juncionais (desmossomos, junção aderente, junção compacta e junção comunicante). 5. Matriz extracelular. 6. Transporte de pequenas e grandes moléculas. Fagocitose e pinocitose/endocitose. 7. Digestão intracelular, lisossomos, endossomos, corpos multivesiculares. Ultraestrutura, composição química e aspectos funcionais. Biogênese dos lisossomos/endossomos e inter-relação entre ambos. Heterofagia e autofagia. Armazenamento de resíduos indigeríveis e processos patológicos ligados aos lisossomos. 8. Síntese celular: ribossomos, retículo endoplasmático liso (REL) e rugoso (RER) e Complexo de Golgi. Ultraestrutura e organização molecular e funcional dos ribossomos e polirribossomos. Aspectos comparativos entre os ribossomos dos procariontes e eucariontes. Biogênese dos ribossomos (nucléolo). Aspectos morfológicos, moleculares e funcionais do REL. Aspectos morfológicos, moleculares, funcionais e do RER e Complexo de Golgi. Integração morfofuncional do RER e Complexo de Golgi. Endereçamento de proteínas para o RER. Alterações pós-traducionais das macromoléculas sintetizadas (dobramento, glicosilação, pontes de dissulfeto). Degradação de proteínas mal-dobradas e/ou defeituosas. Produção, endereçamento, transporte e destino das vesículas/grânulos intracelulares. 9. Transformação de energia na célula - mitocôndrias e cloroplastos. Ultraestrutura e organização molecular e funcional comparada entre as duas organelas. Aspectos gerais sobre a respiração, fotossíntese, β-oxidação dos ácidos graxos, fotorrespiração, integrando morfofuncionalmente as duas organelas. Endereçamento e transporte de proteínas para mitocôndrias e cloroplastos. Características do sistema genético próprio de ambas organelas. Biogênese e origem (teoria endossimbiótica). 10. Noções sobre os Processos de morte celular: apoptose, necrose e armadilhas extracelulares de ácidos nucléicos (Etose). 11. Peroxissomos: Aspectos gerais sobre a estrutura, organização molecular e funcional dos peroxissomos dos animais, plantas (incluindo os glioxissomos). Metabolismo oxidativo e produção/degradação de peróxido de hidrogênio. Ciclo do glioxilato e fotorrespiração. Integração funcional dos peroxissomos com mitocôndrias, cloroplastos e REL. Endereçamento e transporte das proteínas para o peroxissomo. Biogênese. 12. A célula vegetal, com ênfase em parede celular, plasmodesmos e vacúolo. 13. Citoesqueleto e Movimento celular: microfilamentos de actina, filamentos intermediários e microtúbulos. Centríolos, corpúsculos basais, cílios e flagelos. Organização molecular, ultraestrutura e aspectos funcionais. Bases do movimento celular e intracelular. Inibidores de movimento. Biogênese. 14. Armazenamento da informação genética - Núcleo Interfásico. Aspectos bioquímicos e ultraestruturais do envoltório nuclear, nucléolo e cromatina. Aspectos funcionais de cada estrutura nuclear. 15. Diferenciação celular e células-tronco. Prático 1. Instrumentos de análise das estruturas biológicas - Microscópios de luz (comum, contraste de fase; interferência; fluorescência e confocal). Princípios de funcionamento de cada microscópio. Partes mecânicas, de iluminação e de ampliação. Noções sobre a formação de imagens. Limite e poder de resolução de sistemas ópticos. Qualidades das lentes e aberrações. Medidas e unidades em biologia celular. Manuseio do aparelho e estimativa do diâmetro do campo de cada objetiva. 2. Observação de células eucariontes: célula vegetal, célula animal, fungos e protozoários. Permeabilidade celular. Plasmólise na célula vegetal. 3. Observação de células procariontes a fresco e pelo método de Gram. Utilização da objetiva de imersão (100×). 4. Visita a laboratórios de pesquisa com observação de material biológico em Microscópio de Contraste de fase e Microscópio de fluorescência (LAMEB e LIAA). 5. Técnica do fracionamento celular: centrifugação fracionada simples e ultracentrifugação. 6. Células sanguíneas com coloração de Leishman. 7. Princípio de funcionamento dos microscópios eletrônicos de transmissão (MET) e varredura (MEV). Preparo do material biológico para ambos os tipos de aparelhos. Limite e poder de resolução. Análise de micrografias eletrônicas. Visita ao Laboratório Central de Microscopia Eletrônica da UFSC (LCME) para demonstração dos MEV, MET e Microscópio Confocal. 8. Detecção da produção de peróxido de hidrogênio pelos peroxissomos de figado bovino e de batata. 9. Elaboração de diferentes metodologias didáticas que visem à transferência da informação e a aprendizagem através dos conhecimentos adquiridos, simulando as atividades funcionais realizadas pelas diversas estruturas e compartimentos celulares que contemplem os conteúdos abordados ao longo do semestre (PPCC).

VIII. METODOLOGIA DE ENSINO / DESENVOLVIMENTO DO PROGRAMA

O conteúdo programático será desenvolvido através de aulas teóricas (expositivas e dialogadas) com auxílio de recursos audiovisuais e aulas práticas de laboratório. Discussões sobre temas atuais relativos ao conteúdo de Biologia Celular serão realizadas através de debates em sala de aula, seminários apresentados pelos alunos e das PPCC.

IX. PRÁTICA PEDAGÓGICA COMO COMPONENTE CURRICULAR (PPCC)

As PPCC serão realizadas nas últimas semanas de aula, nos horários das aulas práticas.

X. METODOLOGIA DE AVALIAÇÃO

A avaliação do desempenho dos alunos será realizada através de 3 (três) provas escritas, todas com o mesmo peso (peso 1) e relacionadas aos conteúdos ministrados nas aulas teóricas e práticas, assim como nos eventuais estudos extraclasse (artigos científicos, de revista de divulgação científica). A apresentação dos seminários e/ou PPCC (em grūpo) valerá de 0 a 10 pontos e terão peso 1 (um). Portanto, a média final = (somatório das avaliações teórico-práticas + nota da PPCC)/4. A nota mínima de aprovação é igual a 6,0 (seis) e a frequência suficiente é de 75%. Durante as aulas e avaliações é proibido o uso ou atendimento de telefones celulares ou qualquer outro dispositivo eletrônico. Conforme previsto na RESOLUÇÃO N°17/CUn/97, de 30 de setembro de 1997, esta disciplina é isenta de avaliações de recuperação. No caso de haver falta em alguma prova por motivo justificável, o aluno deverá solicitar uma segunda chamada na secretaria do Departamento de BEG, até 3 dias úteis após a realização da prova. A prova de 2a chamada será feita no dia 04 de dezembro de 2018.

XI. CRO	NOGI	RAMA		
Julho				
31	Т	Apresentação da disciplina e do Plano de Ensino; Origem e evolução celular; Histórico da Biologia Celular		
Agosto		1. T. I. I. G. C. Distanta Calular		
02 e 03	P	Instrumentos de análise das estruturas biológicas. Microscópio composto de luz. Unidades métricas em Biologia Celular Limite de Resolução e Poder Resolutivo de um sistema óptico. Tipos e qualidade das lentes		
07		Grandes grupos de seres vivos (Reinos). Diversidade celular e Níveis de organização em Biologia; Evolução d procariontes para eucariontes e multicelularidade. Organização celular dos procariontes: Domínio Bacteria.		
09 e 10	P	Observação de células eucariontes: célula vegetal (<i>Elodea</i> sp.) e permeabilidade celular (plasmolise), celula anima (mucosa bucal), protozoários (paramécios) e fungos (leveduras)		
14	Т	Organização celular dos procariontes: Domínios Bacteria e Archaea		
16 e 17	P	Permeabilidade em células sem parede: hemólise. Técnica do fracionamento celular: centritugação e ultracentrifugação		
21	Т	Membrana celular: componentes químicos, organização e ultraestrutura; Principais técnicas de estudo: ultraestrutura a MET e criofratura.		
23 e 24	P	Observação de células procariontes - Coloração de Gram		
28	T	Estruturas juncionais (desmossomos, junção aderente, junção compacta e junção comunicante).		
30 e 31	P	Tipos de Microscopia de Luz. Visita aos laboratórios LAMEB e ao LIAA		
Setembro	11.			
04	T	PROVA I (8h20 às 10h00) Citoesqueleto I		
06	P	Atividade Moodle: Matriz extracelular		
07	Feria	do Nacional – Independência do Brasil (SEM AULA)		
11	T	Citoesqueleto II		
13 e 14	P	Movimento ciliar em moluscos bivalves		
17 a 21	T	XIX SEMANA DA BIOLOGIA (SEM AULA)		
25	Т	Transformação e armazenamento de energia na célula: Mitocôndrias e Cloroplastos		
27 e 28	P	A célula vegetal (parede celular, plasmodesmos e vacúolo)		
Outubro	1.10			
02	Т	Núcleo interfásico Diferenciação celular e células-tronco		

04 e 05	- P	Processos de morte celular: apoptose, necrose e armadilha extracelulares de ácidos nucleicos		
09	T	Endocitose de macromoléculas - Fagocitose e pinocitose via clatrina e independente de clatrina; Transcitose		
11	P	Atividade Moodle: Mecanismos de morte celular		
12	Feria	riado Nacional – Dia de Nossa Senhora Aparecida (SEM AULA)		
16	T	Biogênese dos endossomos/lisossomos. Digestão intracelular: heterofagia e autofagia		
18 e 19	P	Observação de células sanguíneas humanas - Coloração de Leishman		
23	T	PROVA II (8h20 às 10h00) Ribossomos		
25 e 26	P	Citometria de fluxo. Visita ao LAMEB		
30	T	Processos de síntese na célula I: Retículo Endoplasmático Rugoso (RER)		
Novembro)			
01	P	Microscopia eletrônica de transmissão (MET) e de varredura (MEV), com visita ao LCME Local: Centro de Microscopia Eletrônica da UFSC (próximo ao Restaurante Universitário)		
02	Feria	ado Nacional – Finados (SEM AULA)		
06	Т	Processos de síntese na célula I: Retículo Endoplasmático Rugoso (RER) (continuação) e Processos de síntese na célul II: Complexo de Golgi e Tráfego intracelular		
08 e 09	P	Apresentação das PPCC (Grupos 1 a 3)		
13	Т	Processos de síntese na célula II: Complexo de Golgi e Tráfego intracelular (continuação)		
15 e 16	Feria	do Nacional – Proclamação da República (SEM AULA)		
20	T	Processos de síntese na célula III: Retículo Endoplasmático Liso (REL) e Peroxissomos		
22 e 23	P	Apresentação das PPCC (Grupos 4 a 6)		
27	T	PROVA III (8h20 às 10h00)		
29 e 30	P	Apresentação das PPCC (Grupos 7 a 9)		
Dezembro				
04	T	Segunda chamada de Provas (8h20 às 10h00)		

XII. BIBLIOGRAFIA BÁSICA

ALBERTS B, JOHNSON A, LEWIS J, RAFF M, ROBERTS K, WALTER P. 2010. Biologia Molecular da Célula. 5 ed. Porto Alegre: Artmed (BU-UFSC 576.3 B615 5.ed. 66 exemplares).

ALBERTS B, BRAY D, HOPKIN K, JOHNSON A, LEWIS J, RAFF M, ROBERTS K, WALTER P. 2011. Fundamentos da Biologia Celular. 2 ed. Porto Alegre: Artmed (BU-UFSC 576.3 F981 2.ed. 87 exemplares).

JUNQUEIRA LC, CARNEIRO J. 2005. Biologia Celular e Molecular. 8 ed. Rio de Janeiro: Guanabara Koogan (BU-UFSC 576.3 J95b 8.ed. 106 exemplares).

XIII. BIBLIOGRAFIA COMPLEMENTAR

ALBERTS B, JOHNSON A, LEWIS J, MORGAN D, RAFF M, ROBERTS K, WALTER P. 2017. Biologia Molecular da Célula. 6 ed. Porto Alegre: Artmed.

ALBERTS B, BRAY D, HOPKIN K, JOHNSON A, LEWIS J, RAFF M, ROBERTS K, WALTER P. 2017. Fundamentos da Biologia Celular. 4 ed. Porto Alegre: Artmed.

COOPER GM. 2007. A Célula: Uma Abordagem Molecular. 3 ed. Porto Alegre: Artmed.

JUNQUEIRA LC, CARNEIRO J. 2015. Biologia Celular e Molecular. 9 ed. Rio de Janeiro: Guanabara Koogan.

LODISH H, BERK A, KAISER CA, KRIEGER M, SCOTT MP, BRETSCHER A, PLOEGH H, MATSUDAIRA P. 2014. Biologia Celular e Molecular. 7 ed. Porto Alegre: Artmed.

POLLARD T, EARNSHAW W. 2006. Biologia Celular. 1 ed. Rio de Janeiro: Saunders-Elsevier.

Assinatura do Professor

Assinatura do Chefe do Departamento

Prof², Dr², Andréa Conçaives Trentin

Chefe do Departamento BEG/CCB
SIAPE nº 1160104

Aprovado no Colegiado do para Todo Comero B